Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470072

RESUMO

BACKGROUND: Controlled environment agriculture, particularly vertical farms (VF), also called plant factories, is often claimed as a solution for global food security due to its ability to produce crops unaffected by weather or pests. In principle, essential macronutrients of the human diet, like protein, could technically be produced in VF. This aspect becomes relevant in the era of protein transition, marked by an increasing consumer interest in plant-based protein and environmental challenges faced by conventional farming. However, the real question is: what does the cultivation of protein crops in VF imply in terms of resource use? To address this, a study was conducted using a VF experiment focusing on two soybean cultivars. RESULTS: With a variable plant density to optimize area use, and because of the ability to have more crop cycles per year, protein yield per square metre of crop was about eight times higher than in the open field. Assuming soy as the only protein source in the diet, the resources needed to get total yearly protein requirement of a reference adult would be 20 m2 of crop area, 2.4 m3 of water and 16 MWh of electricity, versus 164 m2, 111 m3 and 0.009 MWh in the field. CONCLUSIONS: The study's results inform the debate on protein production and the efficiency of VF compared to conventional methods. With current electricity prices, it is unlikely to justify production of simple protein crops in VF or promote it as a solution to meet global protein needs. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Sustain Prod Consum ; 36: 88-99, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597516

RESUMO

The City Region Food Systems approach has been proposed to achieve food system resilience and nutrition security while promoting the urgent ecological transition within urban and peri-urban areas, especially after the COVID-19 pandemic. However, the great diversity of the initiatives composing City Region Food Systems in Europe poses barriers to the assessment of their integrated sustainability. Hence, the present work is developed within the EU-H2020 project Food System in European Cities (FoodE), to build a consistent sustainability scoring system that allows comparative evaluation of City Region Food System Initiatives. Adopting a Life Cycle Thinking approach, it advances on existing knowledge and past projects, taking advantage of a participatory process, with stakeholders from multidisciplinary expertise. As a result, the research designs, and tests on 100 case studies a simplified and ready-to-use scoring mechanism based on a quali-quantitative appraisal survey tool, delivering a final sustainability score on a 1-5 points scale, to get insights on the social, economic, and environmental impacts. As in line with the needs of the UN Sustainable Development Goals, the outcome represents a step forward for the sustainable development and social innovation of food communities in cities and regions, providing a practical and empirical lens for improved planning and governance.

3.
Front Plant Sci ; 11: 592171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584743

RESUMO

This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 µmol m-2 s-1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 µmol m-2 s-1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 µmol m-2 s-1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 µmol m-2 s-1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 µmol m-2 s-1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 µmol m-2 s-1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the "optimal" PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...